
UNCLASSIFIED

AD NUMBER

AD666666

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; Sep 1967.
Other requests shall be referred to Air
Force Cambridge Research Laboratories,
Hanscom AFB, MA.

AUTHORITY

AFML, USAF ltr, 12 Jan 1972

THIS PAGE IS UNCLASSIFIED



BOLT B E R A N E K A N D NEWMAN INC

C O N S U I. T I N G D E V E L O P M E N T * E S E A R C H

AFCRL-68-0053

ON MAN-COMPUTER INTERACTION:

(A MODEL AND SOME RELATED ISSUES

Jaime R. Carbonell

e Contract No. F19628-68-C-0125
Project No. 8668
Task No. 866800 D.
Work Unit No. 86680001'

Scientific Report No. 1iLb

This research was sponsored by the Advanced Research Projects A

Agency under Order No. 627

15 September 1967

Distribution of this document is unlimited. It may be released
to the Clearinghouse, Department of Commerce, for sale to the

general public.

Contract Monitor: Hans Zschirnt
Data Sciences Laboratory

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

Best Available Copy Reproduced by Ih&

CEARINGHOUSE
for Federal Scientific & Technical
Informalion Springfield Va. 22151

CAMBIIDGE NEW YORK CHICAGO LOS ANGEt$ES



I

I

AFCRL-68-0053

S0O4 MAN-COMPUTER INTERACTION:

SA MODEL AND SOME RELATED ISSUEýS

t Jaime R. Carbonell

Contract No. F19628-68-C-0125
Project No. 8668
Task No. 866800
Work Unit No. 86680001

"Scientific Report No. 1
-U

-. This research was sponsored by the Auvanced Research Projects
Agency under Order No. 627

"15 September 1967

Distribution of this document is unlimited. It may be released
to the Clearinghouse, Department of Commerce, for sale to the

"- general public.

Contract Monitor: Hans Zs(hirnt
Data Sciences Laboratory

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
"OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 4

• Io



ON MAN-COMUTEM INTEPACTION:

A MODEL AND SOME RELATED ISSUES

Jaime R. Carbonell

[lz
ABSTRACT

KA survey of the literature related to man-computer interaction

reveals the many aspects of this problem, which appears to be

[ in the crossroads among such diverse fields as computer languages,

computer systems operational characteristics, control theory,

decision theory, information theory, applied psychology, computer

SF. display and interface engineering, etc. In this paper we have

chosen to present the on-line interaction from an information

and decision point of view. After a brief discussion of classes

of on-line situations and tasks, we propose a model of the case

in which a human operator is engaged on-line in the solution of

a problem like debugging a program, testing a model in a scien-
tific application, or performing a library search. In this model

iL - the human operator is considered to seek to minimize overall cost.

This cost is obtained by adding the operational cost of both man

[ and computer to a remnant zerminal cost originated by the remain-

ing uncertainty. This analysis, performed for each of a set of

I possible alternatives for action, may lead to select and execute
one of them, to terminate the process, or to re-evaluate the

possible alternatives and/or hypotheses in a search for new ones.

Some practical applications in terms of response time and other

characteristics of a computer utility are presented, as well as

[" some theoretical implications from an informational point of view.

L " Bolt Beranek and Newman Inc., Cambridge, Massact" ,etts, and
Massachusetts Institute of Technology, Cambridge, Massachusetts



•'I. PPOPLEY D!TI•hITION

-, In this paper we present a studY on ran-computer interaction.

.. AmonF the many aspects of the proble-m, we will focus our attention
cn the interaction proceess itself stded from a behavioral point

of view.

Since people began usinr computers on-line, interest developed

F "in studying interaction. However, man-computer interaction
is a subject with different connotations to different people. To

- . some of them, it means discussing the present applications and future

possibilities of man-computer symbiosis (1-3); to others it suggests

-. the development of complete hardware and/or software systems or sub-
systems (4-9). Some people will immediately think of computer

languages (10,11), others will focus on the perceptual aspects of the

problem (12).

"We want here to discuss and model (as much as possible in

"mathematical terms) what a human operator (HO in the followin7)
• .does when he is sitting in front of a console of a time-sharing

* . system, how he inputs a problem, observes results, and makes
. . decisions conditional upon those results and other factorst how

he is affected by either intrinsic or operý.ting system character-
istics, etc. Why center our attention on this aspect of the

problem of man-computer interaction instead of more concrete (and

probably easier) ones?

"- Apart from personal interest, there are some good objective
-" reAsons that validate our approach. First, though some investiga-

tors have attacked the problem from related points of view (13,14),
-.they have used different tools and had a different purpose in mind.

-. In the second place, and this is more important, we are trying to

study the aspect that undoubtedly will change less in the future
"and that, as such, will very likely become the real bottleneck

-1-
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within A few years. This aspect is man who, though adaptive and

variable to a certain extent, has definite limitations and constants

from both a physiological and a behavioral point of view. They will

assure a reasonable long-term validity to the correspondinr studies,

as opposed to those based on computer characteristics and capabilities,
bound to be rapidly obsolete with the fast evolution of computer

technology.

Some investigators as qualified as LicklIder (15) have expressed
doubts about the possibility of basic studies on interaction where

the computer is a major factor, because of the rapid evolution in the

field. This objection does not apply to our approach, as independent

as possible from computer technolopy, and on the contrary validates

it because it shows that man will constitute to a higher and higher

degree the limiting factor in man-computer achievements.

We believe there is need at present for this study. Very little

has been done to formalize our state of knowledge about the inter-

action of man and computer, particularly from a quantitative point

of view. The use of models and the results of experiments which

models suggest will help to isolate critical factors, to point out

some possible absolute limitations, and, ultimately, to design

better man-computer systems-

Before proceeding, let us state some restrictions in the scope

of this paper. We will not be referring to problem preparation,

selection of tools (language, computer facility), or basic implemen-

tation, i.e., programming and codinp; we may be concerned with these

activities only when they are done on-line. In man-computer partner-

ship, there are situations in which one of the partners simply trans-

mits information to the other, with no feedback; we shall basically

discard this case, in which no real interaction is involved.

Figure 1 illustrates the next restriction. Man-computer inter-

action essentially involves communication, elaboration and exchange T'

between two information structures, that of the human operator, and

-2-
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that accessible through the computer system. If this is an active

* two-way communication, there must exist an evaluation, dezision

and control module directing the interchange. This task may be

- done by the HO, by the computer, or by both together; in thim way: ""three possibilities for positioning the interface in Fig. 1 are

established. Scientific and engineering conversational on-line

L -- usage of a time-sharine console is an example of the fir3t case,

together with on-line debugging, conversational information re-

trieval, etc. Examination programs in which the computer is in

control and makes the decisions are an example of the other extreme

2ase. Symbiotic decision making in civilian and military appli-

cations (16,17) is an example of the intermediate case, probably

the most interesting but the most difficult to analyze. In this

paper we limit ourselves to the case in which the evaluation, de-

cision and control module is on the 10 side of the interface, i.e.,

the interface is in the lowest possible position in Fig. 1.

This figure also illustrates the relationship of man-computer

interaction with what can be called "the outside world." The com-

puter may be directly related to it through sensors and/or controls,

though in general it is the man who provides that link. In some

"cases, that outside world may interact with the evaluation, de-

cision and control module, as happens in externally monitored and

"controlled computer-aided instruction systems. In the following

we shall neglect all these exchanges with the outside world, in order

-, to concentrate on the man-computer interaction per se.

To summarize, we are interested in the interaction between

* the man and the computer, in situations in which the HO i :,.n con-

trol and makes the basic decisions while probing an information

* . structure explicitly o.r implicitly contaii'ied in the computer. Ia

this sense, let us point out that it is possible to consider mostr ": tasks in an on-line usage of a computer as information retrieval

Ii
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processes. The HO desires information about a program in de-

bugging, about complete files or particular entries in a library
search, about itelations among variables in most scientific problems,
about effects of changing parameters (in the broad sense of the

word) in computer-aided design. The idea of dealing with an in-

formation retrieval problem will play an important role in the

model to be presented in Sections II and III of this paper.

II. OBSERVING MAII AND COMPUTER INTERACT, AND MODELLING THIS

INTERACTION

Let us briefly observe and freely interpret what the HO

usually does in front of a computer console. In the broadest

sense of the phrase, he has some problem or set of problems he

wants to solve in partnership with the computer. In a somewhat

different sense, he is trying to obtain information about some-

thing with the help of the computer, that is, to use it to diminish

his uncertainty about some problem. This represents an expected

gain for which he is willing to pay a price in terms of his own

time and effort while sitting at the console, as well as in terms

of computer cost. The informational characteristics of his task

apply to the vast majority of cases, be they debugging, information
retrieval per se, engineering and scientific applications, business

uses, etc.

The HO usually approaches the console with a plan of work,

be it broad and sketchy, or detailed and specific. This means that

he has a series of tasks to be done at the computer, apart from

some other tasks elsewhere he is willing at that time to postpone.

In other words, he has ; set of priorities which are going to be

altered in different ways as his work progresses, and which are

dependent on the facility he is using and the operating conditions

(response time and other factors in a time-sharing system) at that

-4
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* particular time. In this sns, If ii role at the console is not

very demanding, he may choose to time-share himself by doing some
concurrent task: read a book, work on another problem, or even,

as has happened several times to the author, work simultaneously
on morL than one time-sharing console. Most f the time, however,
the computer is much raster that- the human cour4ýerpart and demands

all his attention. the basic reason for time-sharing the computer.

By observing a typical on-line computer user, one soon realizes

that there are essentially two modes of interaction. In the first

one, the HO just reacts in a reflex mode to some action by the com-

puter; in this case, he has decided in advance what to do in that

situation, has pre-programmed himself (his action could be replaced

by a computer instruction or subroutine, depending on the case),
* and is merely reacting in a predetermined way to the stiiimulus.

Though a substantial number of the HO actions are of the former type,

the second case is by far the most interesting. In this case, the

HO takes an action only after an evaluation is performed and the

best available alternative is selected. The HO observes some com-

puter output, and evaluates it, considering the alternative between

proceeding with the next Ltep in his plan or altering it. In *'is,

he makes use of some general criteria, but has no definite detailed

program for his repction since he was uncertain about the outcome

of his previous run.

In this type of decisions, we postulate that the HO is, prob-

ably unconsciously, balancing costs. He has presumably obtained
some gain in information* in his last computer experiment (though

there may be a loss, these concepts will be precised later). Typ-

ically, however, he has not completely removed his uncertainty. He

must decide if he proceeds, trying to eliminate that remaining un-

certainty, or declare himself satisfied and go to something else.

In this he is balancing two costs: th" cost that the uncertainty

* Information is being used in this context in a rather loose sense
and not in the information theory one.

___-5-_ _



Lepresents tn him, versus the ongt In computer time and his own
time of making another run in order to keep on improving his

Information about the problem. There are some subtleties in this;
for Instance, in his own cost he must include the coat of post-

poning other tasks in his schedule.

It must be said that the HO is usually interested in some
definite aspect of his problem. He selects to perform the tests
or rutns that have the highest expected gains in Informatlan in
terms of the aspect he is then con,;erned with. Full information
about the problem lies in the computer state together with the set
of states under all possible inputs. To a comnand, the computer
returns some output which represents some symptoms about the protlem
the HO is trying to diagnose. From those symptoms, the HO must
extract the information in terms of his own problem. He then eval-
uates this information: first he usually compares it with h4 s
expectations in terms of an internal model of the problem or sit-
uation to see if "it makes sense"; if not, he may decide to in-
vestigate why, proceeding along a lateral path and storing his
original problem in a push-down manner. As a consequence of that
evaluation (the decision process which we postulate is based on a
cost estimation), he may decide to continue or stop. If he stops,
he must be estimating that the expected gains in continuing do not
offset the costs therein Involved. He may stop either because he is
reasonably satisfied, or because the approach he is taking seems
fruitless and he wants to re-examine possible alternatives. In any
case, he is trying to ortimize, according to some subjective measure
of cost, the expected returns of his next action (or action sequence).

Some examples may illustrate the points 4e have made. Let us
first consider the case of debugging. 'his is a problem-solving

task that ma., be considered also as an information retrieval one.

-6-



The nrogram that the HO is trying to debug is resident in the

computer. The outcome of any given experiment using that program

depends deterministically on both the program itself and the other

inputs (data or commands) given to the computer by the HO. To

take a rather trivial example, suppose that he wants to determine

- first if his program will run to completion urler all possible cir-

cumstances. To find this, he plays some typical experiments. The

outcome of these experiments is not a direct answer to his problem,

or even a full repres,ýntation of the state of the program. Typi-

cally, for each experiment he will obtain a result (which may be

an error message) which is just a "symptom" of the state of the

program, a representation of It. On the other hand, each experiment

implies a -ost, because of time and effort involved, and also be-

,Ase the experiment may alter, perhaps irreversibly, the current

corditionr.

Before beginning to debug, the HO has some opinion of the

chances that his program will run to completion under all circum-

stances; in other words, ho assigns to it some subjective probability.

After edch run, he re-evaluates it, till he is reasonably convinced

one way or the other (if the program does not work, he will then

switch to an error search phase). Assuming that he Is "reasonably"

convinced that the program will run in all cases, what does this

really mean? We may say that it reflects his opinion that it is not

worthwhile to test any longer. In other words, his expected sub-

jective cost of running more tests is higher than his expected gain

in infermation through them.

In an error search phase In debugging, the HO may do essentially

the same thing, except that now, very likely, his hypothesis space

will be much more complex. He will assign probabilities to these

hypotheses, re-assess them after observing the results of experi-

ments, etc. If none of them seems true, he may have to look for

"new ones, in a re-examination of his hypothesis .-pace.

"-4 -7-
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One common case in debugging is to answer the following ques-

tion: are the results being obtained, seemingly correct, really

so? Let us take a precise example to illustrate this. Suppose we

have programmed a digital filter, and we want to test it. We select -.

some typical input of which the output is known, and use it as an *

input to the computer to check our program. Suppose that the out-

put must be the values of the function 3 t/t 2, and we obtain,

for t a 0, 2.9997 instead of exactly 3 (and similar results for other

values of t). Considering quantization noise, etc., we will. probably

be satisfied. This meanc that we will consider it more costly to

keep on testing, than the minor uncertainty left.

TII. A TENTATIVE MODEL ON MAN-COMPUTER INTERACTION

In Section II of this paper we have presented in an informal

fashion most of the basic ideas involved in our model. Now we begin

to formalize them. For didactical reasons, we shall describe the

model at two levels, first in a very simplified way, next in more

detail.

Figure 2 presents a simplified block diagram of the model.

-The computer system and the infoLrmation structure accessible through

it are represented by the lower box. At each Lime, ti, the computer

is characterized by a state vector x(ti) which is a description

the system with which the HO is interacting. In Turing Machine terms,

x(ti) is a full description of the machine at the present time, i.e.,

set of states, set of instructions, tape alphabet, initial (present)

state and head position, and set of final states. The HO is gener-

ally not interested in such a precise and detailed description (though

in some special cases -- particularly in debugging -- he may be

interested in the detail of some registers, and any of them may qualify).

He in interested in a higher level description of the state of his • .

-8-t
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S"• computation and task, This ic reflecte, in th". HO Internal model
"of the situatiun which is a problem-oriented description with

irrelevant aspects and details removed. This internal mode). is
part of the H0 information space.

* -The two other boxes, labeled Evaluation and Decision, also

-. correspond to the HO. A command can be represented by a vector

- u.ti), and can include instructions and data fed into the computer.

This vector (corresponding to an input tape in a Turing machine

model) actuates over x(ti) modifying it to a new vector x(ti+l).

"In correspondence with this modification, the computer produces

"some message described by another vector y(ti,+) from which the HO

* extracts the information z(ti+I) relevant to his problem. This

. . information, together with the output of the internal model, is

fed into the Evaluation module, in order to ul.date the estimation

of the validity of the hypotheses formulated about the problem

being solved. This estimation may be represented by a probability

vector p. Given a prior probability assignment p(ti), and the

computer output z(ti+l), the HO is assumed to computer the posterior

probability vector p(t i+) in a Bayesian way, as will be discussed

later.

Next, an estimation by the 1-- f the gains made by the previous

run, in terms of information obtajii •d about the problem that mo-

tivated the run, ii made. This "state of knowledge" about the prob-

lem (to be defined more precisely later) is transmitted, to the De-

cision module where a decision is taken as to whether the present

task should continue with a new command, or otherwise terminate it.

The latter is done when an estimation of the cost of continuing

yields higher values than the expected reduction in uncertainty.

In this case, a new task may be undertaken. Another possibility is

for the HO to find that with his former policy he ha. not succeeded

in reducing his uncertainty to the desirable extent. In this case,

a reformulation of policy must follow, that is, generation of new

hypotheses and/or actions.

S-9-



Operation of the model is started by means of an initial com-

puter state x(t0 ) and an initial estimate p(t0 ) in terms of the HO

desired informational result space. Successive feedback loops are
performed during each task, At the completion of a task. and always

according to our model, results are stored by the HO for future ref-
erence.

A more detailed block diagram of the model is presented in Fig.

3. Following our stated purpose, we concentrate on the human side
of the interaction. The two modules labeled Decoder and Encoder
represent the necessary transformation of signals between the HO
and the computer information spaces (of course, if a symbolic language

is used, there are other translations inside the computer system).

The connection between Decoder and Encoder corresponds to the already

mentioned, and trivial, pre-programmed interactions.

The Decoder converts the computer output L inco the message z

in which the information irrelevant in terms of the present context

has been eliminated. In elementary cases, this decoding could have

often been programmed in the computer; for example, the HO may receive

-the message a -2-3957 while being only interested in the sign of a.
In other cases, complicated pattern recognition processes may be in-

volved.

The Encoder, in turn, transforms the selected action into a set

of control messages sent through the interface.

In Fig. 3 the HO Information Structure has also been defined in

more detail. The Temporary Storage serves as an I/O buffer for the

information exchanged with the computer system. It J_: connected to

a Permanent Storage which is part in the HO's memory and part in the

form of hard copy produced by the computer, notes, etc.; it acts as

a file system relevant to the problem on-hand.

-10- v



I
The main component of the HO Information Structure is (in terms

of our model) the Internal Model module. It contains the estimated

representation R(ti) of the problem under solution. This state vector

IM Pt is related but not identical to x; it is a more concise, weighted

version of the latter, and may include other pieces of information not

-. present in x such as constraints related to the nature of the problem,

past experience, etc.

Depending on the point of view which one may want to take,

can be considered a noiy representation of x or vice versa, In any

"case, the following functional relationships can be established for the

"" computer:

1(ti+I) - f[L(ti), a(ti), t i (1)

'K(ti) - E[I(ti) a(ti) til (2) .

With simple minor alterations we could have f instead of z,

and u instead of a. For the internal model we have:

1 ( ) - , ti] (3t

1 •(ti+I) -[(ti), A(ti), ti] (4)

- . It must be seen that we may be confronted with errors m. noise --

at all levels. For example, the control really effected may be dif-

ferent than that intended at a logical or at a manyal level (typing

error).

"The last important module in the HO Information Structure is the

"General Plan and Strategy one. This receives inputs from the Internal

Model, from the Results Evaluation (costs), and from the rest of the

HO's memory which includes information that is mostly irrelevant

.- 11-



(or apparently so) to the precise problem on hand. From the complex

information structure, hypotheses and actions are generated. The
set of possible actions {a) is in the model evaluated in a Utility

Evaluation module. The output utilities -- or their negatives the
*oats WJ(a)} -- are derived from both the expected informational
gain after the action and the expected cost' or the action (mainly in'
terms of computer and human time).

The utility set (C(a)) complements an informational measure
S M[•(t,+1)] which is an index of the difference between the presumable

goal of no uncertainty, and the current state of information about
the problem on hand. In other words, the posterior probability vector
p is used to compute a scalar measure M of the HO's degree of "know-

ledge" about the informational problem he is trying to solve. This
measure M, to be discussed In Section IV, is basic to compute the
usefulness of the work just done, in preparation for the decision
about future actions. That usefulness is established for past actions
and estimated for future actions in terms of a general cost J, which
is in turn the sum of two costs: K, representing the cost of not
having perfect knowledge about the problem, and a function of the

S-inf'ormational measure M, and L, which is the cost of performing the
computation. These costs will be further analyzed later.

The posterior evaluation of M decides if the current strategy
should be changed. This may be caused by a lack of results, which
may be as bad as to originate an increase in uncertainty from before

to after last experiment performed. When uncertainty has become very
large, or no satisfactory progress is being made, the model postulates

that a change in the HO's policy will occur. He will do this by one
or more of the operations:

1. Select new action and action sequence (without changing

the action set);

-12-



2. Redefine action set (control set);

3. Redefine event set (hypothesis set).

The first one represents the milder change of the three, while (3)

represents a major re-examination of the problem.

- - VIf the HO operator decides not to change his strategy, he
goes on in the model to decide if he should proceed with a new command

of the same type as before. It is assumed that the HO does so by

means of a prior evaluation of the informational measure M (which now
corresponds to time t 1 +2 ) which he then in turn uses to evaluate his
expected cost after the prospective experiment. The decision to pro-

"ceed is made in terms of this cost. If the HO decides to proceed,
the control signal corresponding to the proposed action is issued,

- ! encoded, and the cycle has finally closed. If the decision is not
* . to proceed, a given hypothesis is accepted (remark that it most likely

- , corresponds to a probability of less than 1, the reason for accepting
* • it being the cost analysis). At this point, this result is put into

temporary storage, and control is passed to the Strategy module which

* will indicate what to do next.

"IV. DISCUSSION OF SELECTED ASPECTS OF THE MODEL AND POSSIBLE
ANALYTICAL APPROACHES

* In this section we shall discuGs zcme aspects of the modol in
further detail, and at the same time evaluate the merits and disad-

* • vantages of different analytical approaches to it.

A. An Optimal Control Theory Approach

It Is possible to formally consider the model on man-computer

* interaction under the framework of modern optimal control theory
(18,19). The optimal control problem can be stated as: Given a
dynamical system (defined by state and output equations), a set

S~-13-
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U of admissible controls ~,a target se' S, and a cost function

J, determine the control function u in U which minimizes J. We
could give a parallel definition of an "Informa~tional control

I a. A sampled, discrete, on-line computer system derined by

Eqs. (1) and (2) above.

b. A set U of all possible experiments, satisfying the
constr'aint (Ut) which is a language defined as the set of

It

admissible commands. Supposing that Utc= Rm, u(-) satisfies*

the constraing (Ut if UtC Ut for all t.

c. A target point S 0 and/or a tmargt set S C R n X(Tl, T2 ) -

here T1and T2 are respectively the initial and final times.

In the man-computer case, the target set must be defined In

terms of an informational measure, representing the uncertainty
about a problem. A measure, though not a distance, is the

entropy H; a threshold of acceptability H* must be defined In
-~ order to define a target set S.

d. Two real-valued cost functions: t(x, A, t) representing

the cost of executing the computation, and K(x, t) which repre-
sents the cost at the end of the computation, and, as such, Is
related to the remaining uncertainty. Really K(x, t)*
F(M(P(tf )]]. Then, if we get to the target set S, in time t f-tQ.
we define the total cost function J as

J u.tu. t K(jf. tf) + t X(x(T), !IT), T) dT (5)

Then, the optimal man-computer control problem is:

_o14-
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Given the elements (a), (b), (c), and (d), i.e., a sampled,

discrete, on-line computer system, a set U of possible k

experiments leading to admissible commands 5, an informational

target point and/or a target set, and a cost function J,
determine the command string u in U which minimizes J.

The analogy presented above should be treated cautiously.

Unfortunately, problems involving the HO as a controller, and more

"so, as a decision maker, are hard to state in precise quantitative
terms. We must also remember that our model cannot be a determin-

. istic one, since most of the parameters and functional relationships
r° are uncertain to man. This in a way parallels the presence of noise

In real dynamic control systems. In both cases, one is dealing with

probability distributions of which expectations must be taken. Another

important problem stems from dealing on-line with a discrete state com-

puter system. Research is, however, in progress (20,21) in an attempt

to find common grounds between Control Theory and Automata Theory.

."" B. A Decision Theory Approach

fF Purther insight can be obtained on man-computer interaction by

studying how the model described In Section III is related to a

formulation in terms of Statistical Decision Theory (22,23). We

must be careful in our statement of the problem if we want to avoid

some confusions. The typical decision problem is a sextuple set
{e, , a,, u(e, Tz, a, 0), Z, ale) where e is an experiment, z Is
its outcome, a is an action, ris the "state of the world," u is
the utility function (assessment of preferences),and P is the

- .. probability assessment of outcomes. To behave optimally, the decision
maker (DM) should choose an e and then, having observed z, choose an

a, in such a way as to maximize his expected utility. This means
-"that In this formulation one seeks information through an experiment

e in order to later perform an action a that leads to some consequence

U.
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The Decision Theory scheme can obviously be related to the
behavior of the HO in front of a computer. We should be cautious,

however, since our problem presents some unique and interesting
aspects that may force a special treatment.

In Decision Theory, one is Interested In selectin6 the possible
action that would yield, under given circumstances, the maximum util-

Ity to the DM. With this purpose, the DM may perform experiments to

improve his information and correct his prior probability space. In
the specific man-computer decision prcilem, the ultimate goal is to

obtain information, and one should not confuse the gain in informa-
tion in the usual decision problems -- when an experiment is made as

an auxiliary item -- with information to be obtained as an end In the
man-computer case. (Of course, in a completely different level, the

information obtained at the computer will be eventually used to decide

on some other action, but we are not interested in this.) The HO

sitting at a computer console does not usually perform experiments

to decide what actions he is going to take at the same console (though
under some circumstances this may be the case). He is usually in

the Decision Theory case of no intermediate experiment, that is, no

e and no z.

The utility function is now a function of the informational

gain. It Is In fact the negative of our total cost J of Subsection IVA.

Of course, most man-computer interaotions could be characterized

as sequential decisions rather than single ones. But again, the

particular characteristics of the man-computer interaction introduce

some complications. The most impoy.tant one relates to the selection
of alternatives. This applies specifically to the selection of

actions, although a similar discussion will be done,applied to hy-

potheses being tested, in Subsection IVD. Most frequently, the set of
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alternatives is not closed, but open. To simplify matters -- and

many times this may be an oversimplification -- the set of alter-

natives is often presented as closed, this being one of the postu-

lates in which Decision Theory is based. In this context, co~led

means a set that includes all poasibilitiez; they are collectively 7

* -exhaustive. On the contrary, an open Set means one that does not

exhaust all possibilities.

Although the closed approximation may be correct in other

applications, it seems rather restrictive to our man-computer inter-

action. In each command, decisions will be made based on a closed

subset, but if no good results are obtained, a search for new actions

may be originated, as was stated before in presenting our model. The

HO working on-line is frequently modifying and restructuring both

his hypothesis and his action spaces. The sudden insight into the

solution of a problem is just an extreme example of this.

In Decision Theory, an important point is that the posterior

probability can be obtained in either one of two ways:

1. Direct estimation, the same way as the first of the

chain of successive priors was itself estimated.

- !2. Computation through the use of Bayes' Theorem:

P(zl0,1 e) P(E3)
'"4 e°i P' ) "P,(zIei,e)

The basic as3umption of the Bayesian point of view is that the

DM is willing to act as if both methods for obtaining the posterior

"" probability should yield the same result. Thus an approximation to

17
-17

- .



I
the HO's behavior in decision making can be based, among other

things, on the assumption that the passage from prior to posterior

probabilitiea is done according to bayes* Theorem. Edwards (24,25)

has investigated this and related topics. His experiments seem to

indicate that man changes his opinions in the presence of experi-

mental results or generally new information, less than what Bayes'

Theorem indicates. In other words, man profits less from recent

Information than he should according to the Bayesian model. This

phenomenon is what Edwards has called "conservatism." In our model

we have adhered to the Bayesian point of view, but conservatism could

be easily incorporated, if desired, to yield more realistic results.

It is probably here a good place in this paper, to point out

the analogies between our approach to man-computer interaction and

Gorry's work on diagnosis (26). He discusses, with a different

purpose in mind, some problems of interest to us. Among them are

the problems of look-ahead, estimation of the utilities of different

decisions, and pruning the decision tree in depth and for breadth.

We are faced with similar problems and we must say that we believe

that the HO in his interaction with the computer does not perform

any complete computation as Decision Theory and Bayes' Theorem

would suggest. That would be an optimal policy, useful to be com-

pared with the actual performance of humans which must be based more

in subjective estimations than in mental calculations.

C. The Problem of Costs

Let us now look closer at the costs as defined before. An

analysis of the effects of response time on the HO's estimation of

* costs has been recently presented by Carbonell, ýlkind and Nickerson

* (27). For simplicity reasons, let us make the notational definitions:

-18-
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L*I t(xU(T), ,(T), T) dT (6)
to

[K - K(E, t.] - PCM[iP(jr)3J

Our total cobt can then be written

[ J a K + L (8)

How are K and L obtained ia3 the case of man-computer interaction?
As said before, the cost K depends on the remainin& uncertainty after
the run. Let us postpone further study of K till the next subsection,

and consider the "trajectory" cost L. Two main components appear

for it, namely the computer cost and the HO's cost. In a time-sharing

environment, computer cost depends on the way computer services are
charged. One or more of the following measures are used: hook-up
flat charge, console elapsed time, CPU time, memory usage as a fun-
ction of space and time, special facilities used, communication link,
etc. Without much loss of generality, one can say that the computer
cost is of the form

Lc - ao + Eajtj (9)

where the tY's are the times corresponding to the different resources,

the a, 's are the corresponding unitary prices, and ao corresponds

to'the hook-up charge.

In few cases, the HO will estimate the cost of his time as

proportional to the time elapsed during the computation. There are

two factors in this. One is his "cost" as a scientist, programmer,

etc., to be derived from his salary. A more important one, perhaps,

from a subjective point of view is the cost that his present activity

•-19
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represents to the HO in ter.&a of postponing other activities

he could be doing at the same time (28,14), and that are qieuirng

for his attention.

When we want to estimate the subjective cost L which the

min assigns to his own time, in a first approach we might Incor-
rectly assume that LHO is proportional to the elapsed time te. This
is not so for several reasons.

First, we have a limit in the total availability of time of

a given man, both to himself and to his organization. As an upper

bound is approached, higher incremental unitary costs must be

placed on his time.

There are many cases in which additional time constraints

are imposed upon the HO at a computer. We have all experienced

the effects of having been assigned on-line time at a computer for,

say, 1 hour at the end of which another user is due. In this case,

as time approache•, its end, and if the schedule of tasks has not
been exhausted, pressure builds up to perform fast and efficiently

the most important tasks. The cost of performing one computation

increases because we may run out of time to perform any other task.

In a more dramatic environment, such as an on-line military system,

an on-line spatial control station, or a real-time MIS, a man at a

nomputer may only have a few minutes to perform some computations,

which would become completely useless if resultsý are obtained after

a given deadline.

In general then, the operating cost (an be written as:

L - *(t, ta, tr, {tj)) (10)

where t. is the elapsed time during the computatioa. ta is the HO's

total availability (per day or per week), tr is the remaining

-20- Vv
00

I



time in the ca3es of externally limited time, and the ti's are
the resource costs. In a recert paper, Carbonell, Elkind and
Nickerson (27) have discussed possible analytical forms for Eq.

(10).

"In the discussion above, our model has assumed that costs
*" could be obtained in a deterministic way. Apart from uncertain-
*- ties due to incomplete knowledge by the HO of cost variables and

functional relationships there is the main question of uncertainty
aboit times. An operator that does not know what the cost (in the
general sense of the term cost) of a given computer run is going
to be to him, will be in a much worse porition to make good decisions,
than one who can estimate those costs with a fair degree of pre-
cision. The reaction of people to computer systems operations
usually takes this into account as a fairly important factor. It
has been observed (29) in a time-sharing environment the preference

"of users for a fixed delay versus a possibly shorter but variable
one. Furthermore, if the mean and variance of the distribution of
variable response times are known, conditions are better than when
they are unknown. People particularly dislike unpredictable con-

[2 ditions. If delays were lonh, but predictable, they could conceiv-
ably carry on some other activity instead of wasting time waiting for

- .a possible result that may come now or later. In terms of our model,
if people can predict times, they may devote themselves to some other
activity, thus diminishing their own cost. Furthermore, they could

"- :make fairly precise cost estimates and confidently derive decisions

"* •from them.

Before ending this discussion on costs, let us look again at
. Eqs. (6), (7), and (8) and make a few remprks about them. First,

to the case of' the HO inpvtting information into the computer, and
* editiag it, we can assign the value K - 0 (null terminal cost) since

-21-
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no information is then sought out of the system. In that case,

we just want to minimize L, the "trajectory" cost. Next, let us
note that In time-sharing, the running cost _ depends directly on
T, since the response of the system will change with time (different
loads); really it is the state x of the computer system which is
then explicitly time-dependent. In an on-line unshared use of a
computer neither x nor L are explicit functions of time. We can

i also consider that in time-sharing t is a time-independent random
variable because of its dependence on an unpredictable load. This

"I' is not only true for costs dependent on elapsed time, but it may alsori apply to CPU and memory costs as well (e.g., different page turning
in two different instances of a given fixed computation).

D. Some Informational Aspects

We hake already said that our model for man-computer inter-

action is based on the idea that most interactive tasks are some
form of information retrieval. In the model the HO extracts in the
Decoder from the output y of the computer the relevant information

&. and then uses it to obtain his posterior probability vector 2.
These probabilities refer to hypotheses the HO has made about a
problem, in what we might call his belief space (30). This space
may consist of only two alternatives, if he is only checking if
something happens or not (like a program running to completion under
all possible inputs within a set). In other cases, such as a search
for some "bug" in a program, the HO may have a set of hypotheses with
probabilities p3, a = 1, 2, ... q.

It is interesting to note the reduction in information that
normally occurs from the total description of the state of the system
given by the state vector x with m dimensions, to the output vector Y
with n dimensions, to z with r dimensions, to the probabil'ty vector
with q dimensions. In practically all interactive 2ases we will have

m >> n > r >>q (11)
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As an application, m >> n indicates the impossibility to

reconstruct x from y alone. The fact that n > r may not be a die-

adventage. In a real situation, though not in the model, the HO

"may often use the observation of • to extract information about

* other aspects related to tasks to be performed later, Rpart from the

S- •main processing in terms of his current interest.

Let us now try to answer the question as to whether the hy-

pothesis space is open or closed in the sense discussed before in

thiz paper. In the situations described above, we must consider the

hypothesis space as an open one, in the sense that to all definite

hypothese: one must add what we may call the complementary one, that

is, the hypothesis H0 that "something else" is happening.

We postulate that the HO assigns to this possibility of "some-

thing else" happening some probability p0 . Therefore

P0 + E Pj .1 (12)

which indicates that the sum of the pj's will usually be less than 1.

From an Information Theory point of view, the complementary

hypothesis is just another hypothesis as all others, and p0 is not

differentiated from the PY's. We claim, however, that this is not

the case from a subjective point of view. In most cases, the HO will

use p0 in a way different from that in which the other probabilities

are used. If the complementary hypothesis turns out to be true, the

HO finds himself completely ignorant of what is happening, except in

a negative way, i.e., that all other hypotheses H that he has con-

sidered are false.

To illustrate this point more clearly, consider the case of

debugging in which hypotheses about the cause of some "bLg" are

-23-



made by the HO. There is also some chance (pc) that the cause
be something else. The HO performLn some tests, successively re-
evaluates his vector p, and finds himself after some time in the

i position that the updated pc has become dominant, even to the point

that what started being the complementary hypotheses is now certain,
j none of the other hypotheses being possible. It is important to

notice that the HO is still fully ignorant about the cause of his
j problem; he has gained very little knowledge about it.

What to do when the complementary hypothesis becomes dominant?
We postulate that the HO will look for new alternatives, new hy-

potheses, and thus claim that the increase in p. beyond a threshold

may be a triggering mechanism to enter the search-for-hypotheses mode.

The capability of generating alternatives, both hypotheses and

actions, is of paramount importance and one of the most difficult
problems in modeling human behavior. It is conceivable that a hier-

* i archy of associations defined according to some distance (that may be
related in a heuristic way to frequency and importance of use) could
be established. The original set of alternatives would be based on

- -the shortest-links. -Regeneration of alternatives would try longer

paths. A similar behavior has been suggested to explain the resolu-
tion by man of grammatical ambiguities in natural languages (31).

According to our previous discussion, the probability vector p

really represents (after Roby (30)) the belief state of the HO about
"* his problem. Roby study assumes in general that the states are mu-

tually exclusive and (collectively) exhaustive, and therefore the set

of associated probabilities sums to one. We have shown before that
this is not the usual case for the man-computer interaction, in which
the probability p0 of the complementary hypothesis should be treated

in an independent way.
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The above discussion becomes clearer if one tries to derive

from the probability vector a a scalar measure M to characterize the
knowledge that the HO believes to have about his problem. Informa-
tion Theory provides the entropy R

: q

H Z pj log pJ (13)
3J0

This measure is based (32) on some conditions that it was found de-
sirable for it to fulfill: (1) H should be continuous in the p1 .

(2) If all the P1 are equal, p1 a 1/n, then H should be a monotonic
increasing function of n. (3) If a choice be broken down into two

successive choices, the original H should be the weighted sum of the
individual values of H. With these three assumptions, Shannon (32)
proves that the only H satisfying them is proportional to the value

given by Eq. (13), the constant of proportionality merely amounting

to a choice of a unit of w"asure.

The entropy as defined above fails, however, to take into account
"some informational aspects that are quite relevant from a behavioral

point of view. One of them is the value of information, or the
equivalent cost of uncertainty. Howard (33) has recently discussed - -

its implications from a strict Statistical Decision point of view.

In simple words, not all uncertainties represent equal costs to us.

The entropy also fails to make any distinction between the
regular hypotheses and the complementary one. More precisely, if the
complementary hypothesis becomes true (the HO is still fully ignorant

about what happens) the entropy goes to zero, the same as when one of

the regular hypotheses is true. If po 1 i, we have reached certainty,
yes, but in subjective terms, certainty of knowing practically nothing

about the problem.

-25-
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One should not, however, criticize Information Theory because

of its failure in explaining the subjective belief of the HO oper-

ator about his own knowledge. Rather we should criticize ourselves

for trying to apply Information Theory outside Its domain of appli-

cation. We must bear in mind that Information Theory was originated

to deal with the transmission of information with a defined, closed,
set of alternatives.

At this point, it seems necessary to define a new measure M

which could be used in our model to represent the belief of the HO
In his own degree or knowledge about the problem. The purpose in

the establishment of such a measure is clearly to provide a quanti-

tative way to arrive at the terminal cost K, the cost of being off

our target, i.e., the cost of imperfect information.

The most rational way to derive such a measure of belief in

personal knowledge seems to be the statement of a set of conditions

for it to fulfill.

In the followiag we shall sketch what those conditions may be,

as well as some measure that satisfies them. Of course, this is a

delicate subject that requires and deserves much more study than we

have done up to now. Necessarily, then, what follows should only

be taken as a tentative, preliminary approach, and no definite con-

clusions should be derived.

It will be convenient first from a practical point of view to

obtain a measure R corresponding to the belief in lack of knowledge,

a measure of estimated "ignorance." We will later derive M from R.
Let us suppose that we have an open set of hypotheses to which a HO

has assigned probabilities p,, plus po for the complementary one.

The conditions or postulates that R should satisfy are tentatively

established as follows:

-26-



a. The measure R should reach a pre-established minimum

- R if and only if one of the probabilities p(l S q)

is equal to 1. As a particular case Rmn may equal 0.

b. The measure R should reach a pre-established maximum

Rmax if and oly if the probability p of the complementary

hypothesis is equal to 1. As a particular case Rmax may

equal infinity.

c. By replacing any of the hypotheses 11(J # 0) by two

others H,' and H1, such that pa' and p," p* , the value of

R should not decrease.

d. If the hypotheses H (J Q 0) are equally likely, an increase

in their number without affecting po should make R larger.

In other words, if

• q' q
Pi Ea J pj 1 1, and q' > q, then Rq' > Rq,

e. If the number of equally likely hypotheses is unchanged

R should monotonically increase with po0

f. If a hypothesis H is created such that its probabilityq+j

of occurrence is taken out of p., leaving a new reduced po' > 0

LI (i.e., P0 * po' ÷ Pq+l)' and the other probabilities are

unaffected, the value of R should decrease.

-27-
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As said before, the set of conditions presented above is

only a tentative one. No effort has been made to make these

conditions Independent, i.e., non-redundant. Condition (c) needs

sace discussion. Obviously the HO may have different degrees of

"fineness" iti establishing his set of hypotheses, and replace-

ment of hypothesis Hj by two others may be thought or as a par-

titioning process. In a sense, we should not have an increase

in R in that case. On the other hand, if we effectively have a

subatitution of two unrelated hypotheses for a single original

one, R should increase. If we want to eliminate the first case,

we could talk of levels of resolution, and have our HO always

working at the coarsest possible level compatible with his current

need to know.

As an example, and without claiming any particular merit

for it, let us present a possible measure R and the corresponding

M. This measure is based on products of factors of the form

(1 + PY). The motivation for this measure lies in the fact that

we want p0 to represent many possible unknown alternatives. So

it seems plausible to divide up p0 into r equal intervals Apo such

that rApo - p0. Treating each of these intervals as the p Is,

and letting r go to infinity (or Apo go to 0) we have:

r q
R - lim n (l + Ap (l + p)

r-- kal Jul

po~ *qP 0  q
liM (1 + !o)r , (1 + Pj) - e n f (1 + p (14)
rr Jl Jul

In this way we obtain a measure R. It can be shown that

this measure complies with conditions (a) to (f) as stated above,

the proofs being omitted since they are rather straightforward.
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It is found that R e for p0 .1, and R -2 for some pj -,,

From this R it is easy to derive a second measure M of belief in

knowledge. For that, for instance, one can apply the transformation

,M -R (15)

which produces values of M betw~en 0 for no knowledge, and I for

absolute certainty.

V. CONCLUSIONS

"In the body of this paper we have presented a tentative model

on man-computer interaction. In this section we present some final

remarks and conclusions.

First, let us clearly indicate that we are not at all claiming

that a HO actually follows the behavior indicated by the model. It

is unreasonable to think that he would compute numerical measures

such as M. All we are claiming is that the model may provide a

suitable framework to think, talk, and carry on theoretical and
,_ ~experimental Investigations about man, com-puter interaction. The ...

analytical developments in the presentation and discussion of the

model are only convenient formulations of constraints and optimal

bounds. Men, of course, seldom behave optimally; furthermore, it

is questionable if their behavior can be expressed in analytical

terms. In Section IV we have presented various analytical points

of view (complementary rather than in conflict) related to the model,

ahd discussed their merits and limitations. It seems at this stage

that a fully analytical treatment is inadequate for the task because

of its rigidity, complexity, and lack of developed analytical tools,

"unless we want to Impose severe constraints and reduce the problem
* "to rather trivial uninteresting cases. On the other hand, an
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I information process model along the lines developed in Section III,

rand incorporating pertinent elements from the approaches discussed
in Section IV, may be the most promising line of attack. In a re-

cent paper Gregg and Simon (31) have discussed in a particular

context (a type or concept formation) the merits of an Information

process model versus an analytical one; they conclude that in their

particular case, the process models are to be preferred as being

stronger, more universal, more precise, simpler, and provide better

predictions than the analytic stochastic theories.

What is the work ahead? On the one hand, a selection of one

or more particular applications should be done to test the model and

some of its implications; several applications are presently being

considered. Next both theoretical and experimental work must be

done. Furtunately, because of the modular nature of the model, con-

trolled experiments with human subjects can be conducted on separate

aspects, while maintaining approximately fixed conditions on the

others. Finally, an overall validation will be necessary at some

point; in this sense an information process model could simulate in

a computer both-another computer and the HO controlling it while

engaged in the solution on-line of some class of problems. The re-

suits or the comparison of this simulation with observed facts and

experimental results about man-computer interaction should be

enlightening.
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